3.294 \(\int \frac {(e+f x)^3 \cos (c+d x)}{a+b \sin (c+d x)} \, dx\)

Optimal. Leaf size=432 \[ \frac {6 i f^3 \text {Li}_4\left (\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right )}{b d^4}+\frac {6 i f^3 \text {Li}_4\left (\frac {i b e^{i (c+d x)}}{a+\sqrt {a^2-b^2}}\right )}{b d^4}+\frac {6 f^2 (e+f x) \text {Li}_3\left (\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right )}{b d^3}+\frac {6 f^2 (e+f x) \text {Li}_3\left (\frac {i b e^{i (c+d x)}}{a+\sqrt {a^2-b^2}}\right )}{b d^3}-\frac {3 i f (e+f x)^2 \text {Li}_2\left (\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right )}{b d^2}-\frac {3 i f (e+f x)^2 \text {Li}_2\left (\frac {i b e^{i (c+d x)}}{a+\sqrt {a^2-b^2}}\right )}{b d^2}+\frac {(e+f x)^3 \log \left (1-\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right )}{b d}+\frac {(e+f x)^3 \log \left (1-\frac {i b e^{i (c+d x)}}{\sqrt {a^2-b^2}+a}\right )}{b d}-\frac {i (e+f x)^4}{4 b f} \]

[Out]

-1/4*I*(f*x+e)^4/b/f+(f*x+e)^3*ln(1-I*b*exp(I*(d*x+c))/(a-(a^2-b^2)^(1/2)))/b/d+(f*x+e)^3*ln(1-I*b*exp(I*(d*x+
c))/(a+(a^2-b^2)^(1/2)))/b/d-3*I*f*(f*x+e)^2*polylog(2,I*b*exp(I*(d*x+c))/(a-(a^2-b^2)^(1/2)))/b/d^2-3*I*f*(f*
x+e)^2*polylog(2,I*b*exp(I*(d*x+c))/(a+(a^2-b^2)^(1/2)))/b/d^2+6*f^2*(f*x+e)*polylog(3,I*b*exp(I*(d*x+c))/(a-(
a^2-b^2)^(1/2)))/b/d^3+6*f^2*(f*x+e)*polylog(3,I*b*exp(I*(d*x+c))/(a+(a^2-b^2)^(1/2)))/b/d^3+6*I*f^3*polylog(4
,I*b*exp(I*(d*x+c))/(a-(a^2-b^2)^(1/2)))/b/d^4+6*I*f^3*polylog(4,I*b*exp(I*(d*x+c))/(a+(a^2-b^2)^(1/2)))/b/d^4

________________________________________________________________________________________

Rubi [A]  time = 0.61, antiderivative size = 432, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 6, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {4519, 2190, 2531, 6609, 2282, 6589} \[ \frac {6 f^2 (e+f x) \text {PolyLog}\left (3,\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right )}{b d^3}+\frac {6 f^2 (e+f x) \text {PolyLog}\left (3,\frac {i b e^{i (c+d x)}}{\sqrt {a^2-b^2}+a}\right )}{b d^3}-\frac {3 i f (e+f x)^2 \text {PolyLog}\left (2,\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right )}{b d^2}-\frac {3 i f (e+f x)^2 \text {PolyLog}\left (2,\frac {i b e^{i (c+d x)}}{\sqrt {a^2-b^2}+a}\right )}{b d^2}+\frac {6 i f^3 \text {PolyLog}\left (4,\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right )}{b d^4}+\frac {6 i f^3 \text {PolyLog}\left (4,\frac {i b e^{i (c+d x)}}{\sqrt {a^2-b^2}+a}\right )}{b d^4}+\frac {(e+f x)^3 \log \left (1-\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right )}{b d}+\frac {(e+f x)^3 \log \left (1-\frac {i b e^{i (c+d x)}}{\sqrt {a^2-b^2}+a}\right )}{b d}-\frac {i (e+f x)^4}{4 b f} \]

Antiderivative was successfully verified.

[In]

Int[((e + f*x)^3*Cos[c + d*x])/(a + b*Sin[c + d*x]),x]

[Out]

((-I/4)*(e + f*x)^4)/(b*f) + ((e + f*x)^3*Log[1 - (I*b*E^(I*(c + d*x)))/(a - Sqrt[a^2 - b^2])])/(b*d) + ((e +
f*x)^3*Log[1 - (I*b*E^(I*(c + d*x)))/(a + Sqrt[a^2 - b^2])])/(b*d) - ((3*I)*f*(e + f*x)^2*PolyLog[2, (I*b*E^(I
*(c + d*x)))/(a - Sqrt[a^2 - b^2])])/(b*d^2) - ((3*I)*f*(e + f*x)^2*PolyLog[2, (I*b*E^(I*(c + d*x)))/(a + Sqrt
[a^2 - b^2])])/(b*d^2) + (6*f^2*(e + f*x)*PolyLog[3, (I*b*E^(I*(c + d*x)))/(a - Sqrt[a^2 - b^2])])/(b*d^3) + (
6*f^2*(e + f*x)*PolyLog[3, (I*b*E^(I*(c + d*x)))/(a + Sqrt[a^2 - b^2])])/(b*d^3) + ((6*I)*f^3*PolyLog[4, (I*b*
E^(I*(c + d*x)))/(a - Sqrt[a^2 - b^2])])/(b*d^4) + ((6*I)*f^3*PolyLog[4, (I*b*E^(I*(c + d*x)))/(a + Sqrt[a^2 -
 b^2])])/(b*d^4)

Rule 2190

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m*Log[1 + (b*(F^(g*(e + f*x)))^n)/a])/(b*f*g*n*Log[F]), x]
 - Dist[(d*m)/(b*f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*Log[1 + (b*(F^(g*(e + f*x)))^n)/a], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2282

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 2531

Int[Log[1 + (e_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.)]*((f_.) + (g_.)*(x_))^(m_.), x_Symbol] :> -Simp[((
f + g*x)^m*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)])/(b*c*n*Log[F]), x] + Dist[(g*m)/(b*c*n*Log[F]), Int[(f + g*x)
^(m - 1)*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)], x], x] /; FreeQ[{F, a, b, c, e, f, g, n}, x] && GtQ[m, 0]

Rule 4519

Int[(Cos[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))^(m_.))/((a_) + (b_.)*Sin[(c_.) + (d_.)*(x_)]), x_Symbol] :>
-Simp[(I*(e + f*x)^(m + 1))/(b*f*(m + 1)), x] + (Int[((e + f*x)^m*E^(I*(c + d*x)))/(a - Rt[a^2 - b^2, 2] - I*b
*E^(I*(c + d*x))), x] + Int[((e + f*x)^m*E^(I*(c + d*x)))/(a + Rt[a^2 - b^2, 2] - I*b*E^(I*(c + d*x))), x]) /;
 FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && PosQ[a^2 - b^2]

Rule 6589

Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[PolyLog[n + 1, c*(a
+ b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d, a*e]

Rule 6609

Int[((e_.) + (f_.)*(x_))^(m_.)*PolyLog[n_, (d_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(p_.)], x_Symbol] :> Simp
[((e + f*x)^m*PolyLog[n + 1, d*(F^(c*(a + b*x)))^p])/(b*c*p*Log[F]), x] - Dist[(f*m)/(b*c*p*Log[F]), Int[(e +
f*x)^(m - 1)*PolyLog[n + 1, d*(F^(c*(a + b*x)))^p], x], x] /; FreeQ[{F, a, b, c, d, e, f, n, p}, x] && GtQ[m,
0]

Rubi steps

\begin {align*} \int \frac {(e+f x)^3 \cos (c+d x)}{a+b \sin (c+d x)} \, dx &=-\frac {i (e+f x)^4}{4 b f}+\int \frac {e^{i (c+d x)} (e+f x)^3}{a-\sqrt {a^2-b^2}-i b e^{i (c+d x)}} \, dx+\int \frac {e^{i (c+d x)} (e+f x)^3}{a+\sqrt {a^2-b^2}-i b e^{i (c+d x)}} \, dx\\ &=-\frac {i (e+f x)^4}{4 b f}+\frac {(e+f x)^3 \log \left (1-\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right )}{b d}+\frac {(e+f x)^3 \log \left (1-\frac {i b e^{i (c+d x)}}{a+\sqrt {a^2-b^2}}\right )}{b d}-\frac {(3 f) \int (e+f x)^2 \log \left (1-\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right ) \, dx}{b d}-\frac {(3 f) \int (e+f x)^2 \log \left (1-\frac {i b e^{i (c+d x)}}{a+\sqrt {a^2-b^2}}\right ) \, dx}{b d}\\ &=-\frac {i (e+f x)^4}{4 b f}+\frac {(e+f x)^3 \log \left (1-\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right )}{b d}+\frac {(e+f x)^3 \log \left (1-\frac {i b e^{i (c+d x)}}{a+\sqrt {a^2-b^2}}\right )}{b d}-\frac {3 i f (e+f x)^2 \text {Li}_2\left (\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right )}{b d^2}-\frac {3 i f (e+f x)^2 \text {Li}_2\left (\frac {i b e^{i (c+d x)}}{a+\sqrt {a^2-b^2}}\right )}{b d^2}+\frac {\left (6 i f^2\right ) \int (e+f x) \text {Li}_2\left (\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right ) \, dx}{b d^2}+\frac {\left (6 i f^2\right ) \int (e+f x) \text {Li}_2\left (\frac {i b e^{i (c+d x)}}{a+\sqrt {a^2-b^2}}\right ) \, dx}{b d^2}\\ &=-\frac {i (e+f x)^4}{4 b f}+\frac {(e+f x)^3 \log \left (1-\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right )}{b d}+\frac {(e+f x)^3 \log \left (1-\frac {i b e^{i (c+d x)}}{a+\sqrt {a^2-b^2}}\right )}{b d}-\frac {3 i f (e+f x)^2 \text {Li}_2\left (\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right )}{b d^2}-\frac {3 i f (e+f x)^2 \text {Li}_2\left (\frac {i b e^{i (c+d x)}}{a+\sqrt {a^2-b^2}}\right )}{b d^2}+\frac {6 f^2 (e+f x) \text {Li}_3\left (\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right )}{b d^3}+\frac {6 f^2 (e+f x) \text {Li}_3\left (\frac {i b e^{i (c+d x)}}{a+\sqrt {a^2-b^2}}\right )}{b d^3}-\frac {\left (6 f^3\right ) \int \text {Li}_3\left (\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right ) \, dx}{b d^3}-\frac {\left (6 f^3\right ) \int \text {Li}_3\left (\frac {i b e^{i (c+d x)}}{a+\sqrt {a^2-b^2}}\right ) \, dx}{b d^3}\\ &=-\frac {i (e+f x)^4}{4 b f}+\frac {(e+f x)^3 \log \left (1-\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right )}{b d}+\frac {(e+f x)^3 \log \left (1-\frac {i b e^{i (c+d x)}}{a+\sqrt {a^2-b^2}}\right )}{b d}-\frac {3 i f (e+f x)^2 \text {Li}_2\left (\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right )}{b d^2}-\frac {3 i f (e+f x)^2 \text {Li}_2\left (\frac {i b e^{i (c+d x)}}{a+\sqrt {a^2-b^2}}\right )}{b d^2}+\frac {6 f^2 (e+f x) \text {Li}_3\left (\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right )}{b d^3}+\frac {6 f^2 (e+f x) \text {Li}_3\left (\frac {i b e^{i (c+d x)}}{a+\sqrt {a^2-b^2}}\right )}{b d^3}+\frac {\left (6 i f^3\right ) \operatorname {Subst}\left (\int \frac {\text {Li}_3\left (\frac {i b x}{a-\sqrt {a^2-b^2}}\right )}{x} \, dx,x,e^{i (c+d x)}\right )}{b d^4}+\frac {\left (6 i f^3\right ) \operatorname {Subst}\left (\int \frac {\text {Li}_3\left (\frac {i b x}{a+\sqrt {a^2-b^2}}\right )}{x} \, dx,x,e^{i (c+d x)}\right )}{b d^4}\\ &=-\frac {i (e+f x)^4}{4 b f}+\frac {(e+f x)^3 \log \left (1-\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right )}{b d}+\frac {(e+f x)^3 \log \left (1-\frac {i b e^{i (c+d x)}}{a+\sqrt {a^2-b^2}}\right )}{b d}-\frac {3 i f (e+f x)^2 \text {Li}_2\left (\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right )}{b d^2}-\frac {3 i f (e+f x)^2 \text {Li}_2\left (\frac {i b e^{i (c+d x)}}{a+\sqrt {a^2-b^2}}\right )}{b d^2}+\frac {6 f^2 (e+f x) \text {Li}_3\left (\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right )}{b d^3}+\frac {6 f^2 (e+f x) \text {Li}_3\left (\frac {i b e^{i (c+d x)}}{a+\sqrt {a^2-b^2}}\right )}{b d^3}+\frac {6 i f^3 \text {Li}_4\left (\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right )}{b d^4}+\frac {6 i f^3 \text {Li}_4\left (\frac {i b e^{i (c+d x)}}{a+\sqrt {a^2-b^2}}\right )}{b d^4}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.19, size = 410, normalized size = 0.95 \[ \frac {\frac {12 f \left (2 f \left (d (e+f x) \text {Li}_3\left (\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right )+i f \text {Li}_4\left (\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right )\right )-i d^2 (e+f x)^2 \text {Li}_2\left (\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right )\right )}{d^4}+\frac {12 f \left (2 f \left (d (e+f x) \text {Li}_3\left (\frac {i b e^{i (c+d x)}}{a+\sqrt {a^2-b^2}}\right )+i f \text {Li}_4\left (\frac {i b e^{i (c+d x)}}{a+\sqrt {a^2-b^2}}\right )\right )-i d^2 (e+f x)^2 \text {Li}_2\left (\frac {i b e^{i (c+d x)}}{a+\sqrt {a^2-b^2}}\right )\right )}{d^4}+\frac {4 (e+f x)^3 \log \left (1+\frac {i b e^{i (c+d x)}}{\sqrt {a^2-b^2}-a}\right )}{d}+\frac {4 (e+f x)^3 \log \left (1-\frac {i b e^{i (c+d x)}}{\sqrt {a^2-b^2}+a}\right )}{d}-\frac {i (e+f x)^4}{f}}{4 b} \]

Antiderivative was successfully verified.

[In]

Integrate[((e + f*x)^3*Cos[c + d*x])/(a + b*Sin[c + d*x]),x]

[Out]

(((-I)*(e + f*x)^4)/f + (4*(e + f*x)^3*Log[1 + (I*b*E^(I*(c + d*x)))/(-a + Sqrt[a^2 - b^2])])/d + (4*(e + f*x)
^3*Log[1 - (I*b*E^(I*(c + d*x)))/(a + Sqrt[a^2 - b^2])])/d + (12*f*((-I)*d^2*(e + f*x)^2*PolyLog[2, (I*b*E^(I*
(c + d*x)))/(a - Sqrt[a^2 - b^2])] + 2*f*(d*(e + f*x)*PolyLog[3, (I*b*E^(I*(c + d*x)))/(a - Sqrt[a^2 - b^2])]
+ I*f*PolyLog[4, (I*b*E^(I*(c + d*x)))/(a - Sqrt[a^2 - b^2])])))/d^4 + (12*f*((-I)*d^2*(e + f*x)^2*PolyLog[2,
(I*b*E^(I*(c + d*x)))/(a + Sqrt[a^2 - b^2])] + 2*f*(d*(e + f*x)*PolyLog[3, (I*b*E^(I*(c + d*x)))/(a + Sqrt[a^2
 - b^2])] + I*f*PolyLog[4, (I*b*E^(I*(c + d*x)))/(a + Sqrt[a^2 - b^2])])))/d^4)/(4*b)

________________________________________________________________________________________

fricas [C]  time = 0.64, size = 1793, normalized size = 4.15 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)^3*cos(d*x+c)/(a+b*sin(d*x+c)),x, algorithm="fricas")

[Out]

1/2*(6*I*f^3*polylog(4, 1/2*(2*I*a*cos(d*x + c) - 2*a*sin(d*x + c) + 2*(b*cos(d*x + c) + I*b*sin(d*x + c))*sqr
t(-(a^2 - b^2)/b^2))/b) + 6*I*f^3*polylog(4, 1/2*(2*I*a*cos(d*x + c) - 2*a*sin(d*x + c) - 2*(b*cos(d*x + c) +
I*b*sin(d*x + c))*sqrt(-(a^2 - b^2)/b^2))/b) - 6*I*f^3*polylog(4, 1/2*(-2*I*a*cos(d*x + c) - 2*a*sin(d*x + c)
+ 2*(b*cos(d*x + c) - I*b*sin(d*x + c))*sqrt(-(a^2 - b^2)/b^2))/b) - 6*I*f^3*polylog(4, 1/2*(-2*I*a*cos(d*x +
c) - 2*a*sin(d*x + c) - 2*(b*cos(d*x + c) - I*b*sin(d*x + c))*sqrt(-(a^2 - b^2)/b^2))/b) + (3*I*d^2*f^3*x^2 +
6*I*d^2*e*f^2*x + 3*I*d^2*e^2*f)*dilog(-1/2*(2*I*a*cos(d*x + c) + 2*a*sin(d*x + c) + 2*(b*cos(d*x + c) - I*b*s
in(d*x + c))*sqrt(-(a^2 - b^2)/b^2) + 2*b)/b + 1) + (3*I*d^2*f^3*x^2 + 6*I*d^2*e*f^2*x + 3*I*d^2*e^2*f)*dilog(
-1/2*(2*I*a*cos(d*x + c) + 2*a*sin(d*x + c) - 2*(b*cos(d*x + c) - I*b*sin(d*x + c))*sqrt(-(a^2 - b^2)/b^2) + 2
*b)/b + 1) + (-3*I*d^2*f^3*x^2 - 6*I*d^2*e*f^2*x - 3*I*d^2*e^2*f)*dilog(-1/2*(-2*I*a*cos(d*x + c) + 2*a*sin(d*
x + c) + 2*(b*cos(d*x + c) + I*b*sin(d*x + c))*sqrt(-(a^2 - b^2)/b^2) + 2*b)/b + 1) + (-3*I*d^2*f^3*x^2 - 6*I*
d^2*e*f^2*x - 3*I*d^2*e^2*f)*dilog(-1/2*(-2*I*a*cos(d*x + c) + 2*a*sin(d*x + c) - 2*(b*cos(d*x + c) + I*b*sin(
d*x + c))*sqrt(-(a^2 - b^2)/b^2) + 2*b)/b + 1) + (d^3*e^3 - 3*c*d^2*e^2*f + 3*c^2*d*e*f^2 - c^3*f^3)*log(2*b*c
os(d*x + c) + 2*I*b*sin(d*x + c) + 2*b*sqrt(-(a^2 - b^2)/b^2) + 2*I*a) + (d^3*e^3 - 3*c*d^2*e^2*f + 3*c^2*d*e*
f^2 - c^3*f^3)*log(2*b*cos(d*x + c) - 2*I*b*sin(d*x + c) + 2*b*sqrt(-(a^2 - b^2)/b^2) - 2*I*a) + (d^3*e^3 - 3*
c*d^2*e^2*f + 3*c^2*d*e*f^2 - c^3*f^3)*log(-2*b*cos(d*x + c) + 2*I*b*sin(d*x + c) + 2*b*sqrt(-(a^2 - b^2)/b^2)
 + 2*I*a) + (d^3*e^3 - 3*c*d^2*e^2*f + 3*c^2*d*e*f^2 - c^3*f^3)*log(-2*b*cos(d*x + c) - 2*I*b*sin(d*x + c) + 2
*b*sqrt(-(a^2 - b^2)/b^2) - 2*I*a) + (d^3*f^3*x^3 + 3*d^3*e*f^2*x^2 + 3*d^3*e^2*f*x + 3*c*d^2*e^2*f - 3*c^2*d*
e*f^2 + c^3*f^3)*log(1/2*(2*I*a*cos(d*x + c) + 2*a*sin(d*x + c) + 2*(b*cos(d*x + c) - I*b*sin(d*x + c))*sqrt(-
(a^2 - b^2)/b^2) + 2*b)/b) + (d^3*f^3*x^3 + 3*d^3*e*f^2*x^2 + 3*d^3*e^2*f*x + 3*c*d^2*e^2*f - 3*c^2*d*e*f^2 +
c^3*f^3)*log(1/2*(2*I*a*cos(d*x + c) + 2*a*sin(d*x + c) - 2*(b*cos(d*x + c) - I*b*sin(d*x + c))*sqrt(-(a^2 - b
^2)/b^2) + 2*b)/b) + (d^3*f^3*x^3 + 3*d^3*e*f^2*x^2 + 3*d^3*e^2*f*x + 3*c*d^2*e^2*f - 3*c^2*d*e*f^2 + c^3*f^3)
*log(1/2*(-2*I*a*cos(d*x + c) + 2*a*sin(d*x + c) + 2*(b*cos(d*x + c) + I*b*sin(d*x + c))*sqrt(-(a^2 - b^2)/b^2
) + 2*b)/b) + (d^3*f^3*x^3 + 3*d^3*e*f^2*x^2 + 3*d^3*e^2*f*x + 3*c*d^2*e^2*f - 3*c^2*d*e*f^2 + c^3*f^3)*log(1/
2*(-2*I*a*cos(d*x + c) + 2*a*sin(d*x + c) - 2*(b*cos(d*x + c) + I*b*sin(d*x + c))*sqrt(-(a^2 - b^2)/b^2) + 2*b
)/b) + 6*(d*f^3*x + d*e*f^2)*polylog(3, 1/2*(2*I*a*cos(d*x + c) - 2*a*sin(d*x + c) + 2*(b*cos(d*x + c) + I*b*s
in(d*x + c))*sqrt(-(a^2 - b^2)/b^2))/b) + 6*(d*f^3*x + d*e*f^2)*polylog(3, 1/2*(2*I*a*cos(d*x + c) - 2*a*sin(d
*x + c) - 2*(b*cos(d*x + c) + I*b*sin(d*x + c))*sqrt(-(a^2 - b^2)/b^2))/b) + 6*(d*f^3*x + d*e*f^2)*polylog(3,
1/2*(-2*I*a*cos(d*x + c) - 2*a*sin(d*x + c) + 2*(b*cos(d*x + c) - I*b*sin(d*x + c))*sqrt(-(a^2 - b^2)/b^2))/b)
 + 6*(d*f^3*x + d*e*f^2)*polylog(3, 1/2*(-2*I*a*cos(d*x + c) - 2*a*sin(d*x + c) - 2*(b*cos(d*x + c) - I*b*sin(
d*x + c))*sqrt(-(a^2 - b^2)/b^2))/b))/(b*d^4)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (f x + e\right )}^{3} \cos \left (d x + c\right )}{b \sin \left (d x + c\right ) + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)^3*cos(d*x+c)/(a+b*sin(d*x+c)),x, algorithm="giac")

[Out]

integrate((f*x + e)^3*cos(d*x + c)/(b*sin(d*x + c) + a), x)

________________________________________________________________________________________

maple [F]  time = 2.12, size = 0, normalized size = 0.00 \[ \int \frac {\left (f x +e \right )^{3} \cos \left (d x +c \right )}{a +b \sin \left (d x +c \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f*x+e)^3*cos(d*x+c)/(a+b*sin(d*x+c)),x)

[Out]

int((f*x+e)^3*cos(d*x+c)/(a+b*sin(d*x+c)),x)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)^3*cos(d*x+c)/(a+b*sin(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?`
 for more details)Is 4*b^2-4*a^2 positive or negative?

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\cos \left (c+d\,x\right )\,{\left (e+f\,x\right )}^3}{a+b\,\sin \left (c+d\,x\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)*(e + f*x)^3)/(a + b*sin(c + d*x)),x)

[Out]

int((cos(c + d*x)*(e + f*x)^3)/(a + b*sin(c + d*x)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)**3*cos(d*x+c)/(a+b*sin(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________